What is the outlook for sickle cell anemia? Can it be cured?

The life expectancy of persons with sickle cell anemia is reduced. Some patients, however, can remain without symptoms for years, while others do not survive infancy or early childhood. Nevertheless, with optimal management patients can now survive beyond the fourth decade.

Most patients suffer intermittent pain crises, fatigue, bacterial infections, and progressive tissue and organ damage. Impaired growth and development is the result of the physical and emotional trauma that is endured by children with sickle cell anemia.

Causes of death include bacterial infection (the most common cause), stroke or bleeding into the brain, and kidney, heart, or liver failure. The risk of bacterial infections does diminish after three years of age. Nevertheless, bacterial infections are the most common cause of death at any age. Therefore, any signs of infection in a person with sickle cell anemia must be reviewed with a doctor to prevent damage and save lives.

Interestingly, the sickle cell gene somewhat protects against malaria infection. This makes those with sickle cell trait (gene carriers) at least partially resistant to malaria. Furthermore, the geographic distribution of the sickle cell gene is similar to that of malaria infection. Sickle cell anemia is a lethal condition that threatens life. However, there may be a selective advantage to being a sickle cell carrier (trait) if the person resides in an area of the world where malaria is very common. The advantage a person with sickle cell trait has over a non-carrier of the gene may explain why sickle cell anemia did not disappear from the world even though it is lethal.

The sickle cell gene is not a “black gene.” It just happens to disproportionately occur in the black population. When a black person who carries a sickle cell gene has children with a non-black person, the children may inherit the sickle cell gene regardless of race. There are also people of all races who carry the sickle cell gene.

Recent research is examining further ways to promote the development of the fetal hemoglobin that delays the development of sickle cell in the newborn. Bone marrow transplantation is being used for patients with severe sickle cell anemia who have a sibling donor. Future treatments may involve genetic engineering where cures might be achieved.

Finally, genetic counseling can be helpful for parents and families to prevent sickle cell anemia. Sickle cell anemia is an inherited illness. Both parents must be carriers of the sickle cell gene for a child to be affected with sickle cell anemia. If each parent is a carrier, any child has a one chance in two (50%) of also being a carrier and a one in four (25%) chance of inheriting both genes from the parents and being affected with sickle cell anemia.